Abstract
Poly(2-alkyl/aryl-2-oxazoline)s (PAOx) are an alluring class of polymers for many applications due to the broad chemical diversity that is accessible for these polymers by simply changing the initiator, terminating agent and the monomer(s) used in their synthesis. Additional functionalities (that are not compatible with the cationic ring-opening polymerization) can be introduced to the polymers via orthogonal post-polymerization modifications. In this work, we expand this chemical diversity and demonstrate an easy and straightforward way to introduce a wide variety of functional end-groups to the PAOx, by making use of methyl bromoacetate (MeBrAc) as a functional initiator. A kinetic study for the polymerization of 2-ethyl-2-oxazoline (EtOx) in acetonitrile (CH3CN) at 140 °C revealed relatively slow initiation and slower polymerization than the commonly used initiator, methyl tosylate (MeOTs). Nonetheless, well-defined polymers could be obtained with MeBrAc as initiator, yielding polymers with near-quantitative methyl ester end-group functionality. Next, the post-polymerization modification of the methyl ester end-group with different amines was explored by introducing a range of functionalities, i.e. hydroxyl, amino, allyl and propargyl end-groups. The lower critical solution temperature (LCST) behavior of the resulting poly(2-ethyl-2-oxazoline)s was found to vary substantially in function of the end-group introduced, whereby the hydroxyl group resulted in a large reduction of the cloud point transition temperature of poly(2-ethyl-2-oxazoline), ascribed to hydrogen bonding with the polymer amide groups. In conclusion, this paper describes an easy and fast modular approach for the preparation of end-group functionalized PAOx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.