Abstract

Nowadays, manufacturers give importance to the production of machines that allow for faster production, reduce labor costs, and minimize operation errors to meet the increasing demand. The search for such machines leads the manufacturing sector to automation. In this study, an automation-supported tapping machine prototype was manufactured. Kinematic equations were used for determining the location of the end effector in Cartesian space, whereas inverse kinematic equations were used for angular positions in joint space relative to positions in Cartesian space. Based on the results of the kinematic equations, the data obtained in certain positions were taught to the system through ANN. The position values for the angles known through the artificial intelligence algorithm were taught to the system. Then, the position coordinates to be reached by this manipulator, which has four degrees of freedom, for the intermediate position coordinate values through artificial neural networks (ANN) have been obtained. It is expected that the device controlled by artificial intelligence will not be affected by the variables in parameter or force changes requiring high working performance. With the control of the positions through ANN, it has been ensured that the position control of the tapping robot manipulator is predicted based on artificial intelligence techniques depending on the angle values of the limbs, and the robot is prevented from going to a position that is on a different trajectory. Accordingly, the robot arm has been made controllable with ANN techniques. With ANN modelling, the position of the end point to perform the tapping process was estimated with high reliability. For future research, a rough simulation was made to see whether the end point would go to a different position in space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.