Abstract

DNA polymerase μ is a member of the mammalian pol X family and reduces deletion during chromosome break repair by nonhomologous end joining (NHEJ). This biological role is linked to pol μ's ability to promote NHEJ of ends with noncomplementary 3′ overhangs, but questions remain regarding how it performs this role. We show here that synthesis by pol μ in this context is often rapid and, despite the absence of primer/template base-pairing, instructed by template. However, pol μ is both much less active and more prone to possible template independence in some contexts, including ends with overhangs longer than two nucleotides. Reduced activity on longer overhangs implies pol μ is less able to synthesize across longer gaps, arguing pol μ must bridge both sides of gaps between noncomplementary ends to be effective in NHEJ. Consistent with this argument, a pol μ mutant defective specifically on gapped substrates is also less active during NHEJ of noncomplementary ends both in vitro and in cells. Taken together, pol μ activity during NHEJ of noncomplementary ends can thus be primarily linked to pol μ's ability to work together with core NHEJ factors to bridge DNA ends and perform a template-dependent gap fill-in reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.