Abstract

This study proposes a new encoding method, also known as an encryption chain based on the measurement result. Then, using the encryption chain to propose a unitary-operation-based semi-quantum key distribution protocol (SQKD) protocol. In the existing SQKD protocols, semi-quantum environments adopt a round-trip transmission strategy. In round-trip transmission, the classical participant must resend the received photons to the quantum participant after implementing local operations. Therefore, round-trip transmissions are vulnerable to Trojan horse attacks. Hence, the classical participant must be equipped with a photon number splitter and an optical wavelength filter device against Trojan horse attacks. This is illogical for semi-quantum environments because the burden on the classical participant is significantly increased as it involves the prevention of Trojan horse attacks. The proposed SQKD protocol is congenitally immune to Trojan horse attacks and involves no extra hardware because it is designed based on a one-way transmission as opposed to a round-trip transmission. When compared to the existing SQKD protocols, the proposed SQKD protocol provides the best qubit efficiency, and classical participants only require two quantum capabilities, which enhance its practicability. Moreover, the proposed SQKD protocol is free from collective attacks, Trojan horse attacks, and intercept-resend attacks. Thus, the proposed scheme is more efficient and practical than the existing SQKD protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call