Abstract

Deep packet inspection (DPI) is widely used in detecting abnormal traffic and suspicious activities in networks. With the growing popularity of secure hypertext transfer protocol (HyperText Transfer Protocol over Secure Socket Layer, HTTPS), inspecting the encrypted traffic is necessary. The traditional decryption-and-then-encryption method has the drawback of privacy leaking. Decrypting encrypted packets for inspection violates the confidentiality goal of HTTPS. Now, people are faced with a dilemma: choosing between the middlebox’s ability to perform detection functions and protecting the privacy of their communications. We propose OTEPI, a system that simultaneously provides both of those properties. The approach of OTEPI is to perform the deep packet inspection directly on the encrypted traffic. Unlike machine and deep learning methods that can only classify traffic, OTEPI is able to accurately identify which detection rule was matched by the encrypted packet. It can facilitate network managers to manage their networks at a finer granularity. OTEPI achieves the function through a new protocol and new encryption schemes. Compared with previous works, our approach achieves rule encryption with oblivious transfer (OT), which allows our work to achieve a better balance between communication traffic consumption and computational resource consumption. And our design of Oblivious Transfer and the use of Natural Language Processing tools make OTEPI outstanding in terms of computational consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call