Abstract

The plasma exciton induced photocatalytic reaction has considerable potential in terms of controllability and selectivity. In this paper, with the advantage of Raman fingerprinting, the localized photocatalytic reaction driven by surface plasmons is realized by the writing and reading process of encrypted information at the micro/nano scale. A layer of probe molecules (4-nitrobenzenethiol, 4-NBT) was assembled on a gold nanoporous array grown on porous anodic aluminium oxide (AAO) membranes. The focused Raman spot is manipulated in a two-dimensional micro/nano manipulation technique to control the movement of the spot at an excitation wavelength of 633 nm. Probe molecules within the spot trajectory will undergo a photocatalytic reaction to produce p,p'-dimercaptoazobenzene (DMAB) molecules, thereby writing the specific information required. The use of Raman mapping to image the characteristic peaks of formed DMAB under excitation light with a longer wavelength of 785 nm enables the readout of 2D micro/nano cryptograms. Combined with finite-difference time-domain (FDTD) simulations, it was found that the presence of a large number of regularly arranged hot spots on the surface of the array is the key to achieving the efficient photocatalytic reaction. This study enables real-time, lossless recording/reading of encrypted information with the aid of 2D Raman technology. This would be a very interesting research area with broad application in confidential information storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call