Abstract
We analyse the first-passage properties of two random walkers confined to a finite one-dimensional domain. For the case of absorbing boundaries at the endpoints of the interval, we derive the probability that the two particles meet before either one of them becomes absorbed at one of the boundaries. For the case of reflecting boundaries, we obtain the mean first encounter time of the two particles. Our approach leads to closed-form expressions that are more easily tractable than a previously derived solution in terms of the Weierstrass’ elliptic function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.