Abstract

This work presents a neuroinformatic method for deriving mechanistic descriptions of fine-structured neural activity. This is a new development in the computer-assisted analysis of dynamics in conductance-based models, which is illustrated using single compartment models of an action potential. A sequence of abstract, qualitative motifs is inferred from this analysis, forming a template that is independent of the specific equations from which they were abstracted. The template encodes the assumptions behind the model reduction steps used to derive the motifs, and so specifies quantitative information about their domains of validity. The template representation of a mechanism is converted to a hybrid dynamical system, which is simulated as a sequence of low-dimensional reduced models (in this example, phase plane models) with appropriate switching conditions taken from the motifs. We demonstrate the validity of the template on a detailed single neuron model of spiking taken from the literature, and show that the corresponding hybrid system simulation closely mimics the spiking dynamics of the full model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.