Abstract
AbstractWe prove a generalization of Krieger’s embedding theorem, in the spirit of zero-error information theory. Specifically, given a mixing shift of finite type X, a mixing sofic shift Y, and a surjective sliding block code $\pi : X \to Y$ , we give necessary and sufficient conditions for a subshift Z of topological entropy strictly lower than that of Y to admit an embedding $\psi : Z \to X$ such that $\pi \circ \psi $ is injective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.