Abstract

Breaking the diffraction limit and focusing laser beams to subwavelength scale are becoming possible with the help of recent developments in plasmonics. Such subwavelength focusing bridges different length scales of laser beams and matter. Here we consider optical vortex, or laser beam carrying orbital angular momentum (OAM) and discuss potential subwavelength magnetic phenomena induced by such laser. On the basis of numerical calculations using Landau-Lifshitz-Gilbert equation, we propose two OAM-dependent phenomena induced by optical vortices, generation of radially anisotropic spin waves and generation of topological defects in chiral magnets. The former could lead to the transient topological Hall effect through the laser-induced scalar spin chirality, and the latter reduces the timescale of generating skyrmionic defects by several orders compared to other known means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.