Abstract
Detection of force increases and decreases is important in motor control. Experiments were performed to characterize the structure and responses of tibial campaniform sensilla, receptors that encode forces through cuticular strains, in the middle leg of the stick insect (Carausius morosus). The sensilla consist of distinct subgroups. Group 6A sensilla are located 0.3mm distal to the femoro-tibial joint and have oval shaped cuticular caps. Group 6B receptors are 1mm distal to the joint and have round caps. All sensilla show directional, phasico-tonic responses to forces applied to the tibia in the plane of joint movement. Group 6B sensilla respond to force increases in the direction of joint extension while Group 6A receptors discharge when those forces decrease. Forces applied in the direction of joint flexion produce the reverse pattern of sensory discharge. All receptors accurately encode the rate of change of force increments and decrements. Contractions of tibial muscles also produce selective, directional sensory discharges. The subgroups differ in their reflex effects: Group 6B receptors excite and Group 6A sensilla inhibit tibial extensor and trochanteral depressor motoneurons. The tibial campaniform sensilla can, therefore, encode force increases or decreases and aid in adapting motor outputs to changes in load.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.