Abstract

Images of the Earth's surface acquired by a high-altitude aircraft or satellites are degraded by the intervening atmosphere. The imaging instrument records not only the signal of the targeted viewing area but also the radiance scattered into the field of view in the near by area. This effect can be characterized by an atmospheric point spread function (PSF). There are many parameters that may affect the PSF. To restore noisy-blurred images, one must understand which parameters influence the PSF and to what degree. This is very important for scientific applications that seek to extract information about environmental systems. In this paper, a design and implementation of a distributed representation scheme and neural networks are presented in order to estimate the atmospheric PSF. The representation scheme exemplifies the conjunctive coding and coarse coding techniques. Neural networks trained using such an appropriately structured representation generate a desired approximation of the PSF with satisfactory processing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.