Abstract

The notion of a p-Riordan graph generalizes that of a Riordan graph, which, in turn, generalizes the notions of a Pascal graph and a Toeplitz graph. In this paper we introduce the notion of a p-Riordan word, and show how to encode p-Riordan graphs by p-Riordan words. For special important cases of Riordan graphs (the case $$p=2$$ ) and oriented Riordan graphs (the case $$p=3$$ ) we provide alternative encodings in terms of pattern-avoiding permutations and certain balanced words, respectively. As a bi-product of our studies, we provide an alternative proof of a known enumerative result on closed walks in the cube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.