Abstract

In this work, we propose a Frequency-based Action Descriptor (FADE) to represent human actions. In robotics, with the development of Programming by Demonstration (PbD) methods, representing and recognizing large sets of actions has become crucial to build autonomous systems that learn from humans. The FADE descriptor leverages Fast Fourier Transform (FFT) for action representation and is combined with the Manhattan distance for measuring similarities between actions. It is characterized by a low time and space complexity and is particularly suitable for classification of human actions. For clustering problems, we propose a modified version of FADE, called Uncompressed-FADE (U-FADE), which performs well in combination with Spectral Clustering algorithms at the price of a reduced compression. We compare FADE with action descriptors based on Singular Value Decomposition (SVD) and Hidden Markov Models (HMM) on the entire HDM05 motion capture database. Despite the high dimensionality of the problem, we obtained on the entire database a promising recognition rate of 78% combining FADE with a simple 1-NN classification algorithm. Furthermore, we achieved a rate of 98% on a small action set and 88% on a medium action set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call