Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.