Abstract

There are a number of frameworks for modelling argumentation in logic. They incorporate a formal representation of individual arguments and techniques for comparing conflicting arguments. A common assumption for logic-based argumentation is that an argument is a pair 〈 Φ , α 〉 where Φ is minimal subset of the knowledge-base such that Φ is consistent and Φ entails the claim α. Different logics provide different definitions for consistency and entailment and hence give us different options for argumentation. Classical propositional logic is an appealing option for argumentation but the computational viability of generating an argument is an issue. To better explore this issue, we use quantified Boolean formulae to characterise an approach to argumentation based on classical logic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.