Abstract

Recent research into sodium zirconate as a high-temperature CO2 sorbent has been extensive, but detailed knowledge of the material's crystal structure during synthesis and carbon dioxide uptake remains limited. This study employs neutron diffraction (ND), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) to explore these aspects. An improved synthesis method, involving the pre-drying and ball milling of raw materials, produced pure samples with average crystal sizes of 37-48 nm in the monoclinic phase. However, using a slower heating rate (1 °C/min) decreased the purity. Despite this, the 1 °C/min rate resulted in the highest CO2 uptake capacity (4.32 mmol CO2/g Na2ZrO3) and CO2 sorption rate (0.0017 mmol CO2/g) after 5 min at 700 °C. This was attributed to a larger presence of microstructure defects that facilitate Na diffusion from the core to the shell of the particles. An ND analysis showed that the conversion of Na2ZrO3 was complete under the studied conditions and that CO2 concentration significantly impacts the rate of CO2 absorption. The TGA results indicated that the reaction rate during CO2 sorption remained steady until full conversion due to the absorptive nature of the chemisorption process. During the sorbent reforming step, ND revealed the disappearance of Na2O and ZrO2 as the zirconate phase reformed. However, trace amounts of Na2CO3 and ZrO2 remained after the cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.