Abstract

Pronunciation of words or morphemes may vary systematically in different phonological contexts, but it remains unclear how different levels of phonological information are encoded in speech production. In this study, we investigated the online planning process of Mandarin Tone 3 (T3) sandhi, a case of phonological alternation whereby a low-dipping tone (T3) changes to a Tone 2 (T2)-like rising tone when followed by another T3. To examine the time course of the encoding of the abstract category-level (underlying form) and context-specific phonological form (surface form) of T3, we conducted an electroencephalographic (EEG) study with a phonologically-primed picture naming task and examined the event-related potentials (ERPs) time-locked to the stimulus onset as well as speech response onset. The behavioral results showed that targets primed by T3 or T2 primes yielded shorter naming latencies than those primed by control primes. Importantly, the EEG data revealed that T3 primes elicited larger positive amplitude over broad frontocentral regions roughly in the 320–550 ms time window of stimulus-locked ERP and −500 to −400 ms time window of response-locked ERP, whereas T2 primes elicited larger negative amplitude over left frontocentral regions roughly in the −240 to −100 ms time window of response-locked ERP. These results indicate that the underlying and the surface form are encoded at different processing stages. The former presumably occurs in the earlier phonological encoding stage, while the latter probably occurs in the later phonetic encoding or motor preparation stage. The current study offers important implications for understanding the processing of phonological alternations and tonal encoding in Chinese word production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call