Abstract

Conventional magnetic resonance spectroscopic imaging (MRSI) is a Fourier transform-based imaging technique. During data acquisition, Fourier encodings or ( k , t ) -space data are acquired. Decoding (or image reconstruction) is often accomplished using the truncated Fourier series. To overcome the well-known limited-data problem with Fourier transform MRSI, several constrained MRSI methods have been developed to exploit prior knowledge to improve the coding (data acquisition) and decoding (image reconstruction) process. This article reviews two of these constrained MRSI methods: SLIM (Spectral Localization by IMaging) and SPICE (SPectroscopic Imaging by exploiting spatiospectral CorrElation). SLIM is a classical method designed to use explicit boundary information obtained from anatomical imaging to improve spectral localization; SPICE is a modern method that exploits the subspace (or low-rank) structure of spatiospectral functions for efficient spatiospectral encoding and high-quality image reconstruction from sparsely sampled data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.