Abstract

Encoding and decoding are the two key steps in information processing. In this work, we study the encoding and decoding capabilities of operational theories in the context of information-storability game, where the task is to freely choose a set of states from which one state is chosen at random and by measuring the state it must be identified; a correct guess results in as many utiles as the number of states in the chosen set and an incorrect guess means a penalty of a fixed number of utiles. We connect the optimal winning strategy of the game to the amount of information that can be stored in a given theory, called the information storability of the theory, and show that one must use so-called nondegradable sets of states and nondegradable measurements whose encoding and decoding properties cannot be reduced. We demonstrate that there are theories where the perfect discrimination strategy is not the optimal one so that the introduced game can be used as an operational test for super information storability. We further develop the concept of information storability by giving new useful conditions for calculating it in specific theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call