Abstract

Polymer electrolyte fuel cells (PEFC) provide the option of a remote power source with high efficiency and minimal green-house gases, NOx, SOx and particulate matter. To protect the PEFC stack from the environment in which remote power sources are required, an actively controlled enclosure to provide optimal temperature and relative humidity to the open-air cathode PEFC stack is studied. A mathematical model of a transient, non-isothermal, lumped parameter, open-cathode fuel cell stack is developed and coupled with an enclosure model. The open-cathode fuel cell stack mathematical model includes characterization of the cathode channel, the anode channel and the membrane electrode assembly (MEA). The transient mass and energy transport equations for the coupled system are solved to determine the optimal operating conditions for the PEFC stack within the enclosure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.