Abstract

Existing Nonlinear Anisotropic Diffusion (NAD) methods in image smoothing cannot obtain satisfied results near singularities and isolated points because of the discretization errors. In this paper, we propose a new scheme, named Enclosed Laplacian Operator of Nonlinear Anisotropic Diffusion (ELONAD), which allows us to provide a unified framework for points in flat regions, edge points and corners, even can delete isolated points and spurs. ELONAD extends two diffusion directions of classical NAD to eight or more enclosed directions. Thus it not only performs NAD according to modules of enclosed directions which can reduce the influence of traction errors greatly, but also distinguishes isolated points and small spurs from corners which must be preserved. Smoothing results for test patterns and real images using different discretization schemes are also given to test and verify our discussions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.