Abstract

Reactive Zero Valent Iron (ZVI) nanoparticles have been widely explored for in situ ground water remediation to degrade both non-aqueous phase liquid (NAPL) and water-soluble contaminants. However, they usually suffer from rapid oxidation and severe agglomerations restricting their delivery at NAPL/water interface. Aim of this study was to encapsulate the ZVI nanoparticles (50 nm) in amphiphilic bicompartmental Janus particles (711 ± 11 nm) fabricated by EHDC (electrohydrodynamic co-jetting). The dual compartments were composed of PLA (polylactic acid) and a blend of PLA, PE (poly (hexamethylene 2,3-O-isopropylidenetartarate) and PAG (photo acid generator). Upon UV irradiation, PAG releases acid to unmask hydroxyl groups present in PE to make only PE compartment hydrophilic. The entrapped ZVI nanoparticles (20 w/w%; ∼99 % encapsulation efficiency) were observed to degrade both hydrophilic (methyl orange dye) and hydrophobic (trichloro ethylene) contaminants. UV treated Janus particles provided stable dispersion (dispersed up to 3 weeks in water), prolonged reactivity (∼24 days in contaminated water), and recyclability (recyclable up to 9 times) as compared to non-treated ones. In addition, the amphiphilic Janus particles demonstrated high transportability (>95%) through porous media (sand column) with very low attachment efficiency (0.07), making them a promising candidate to target contaminants at NAPL/water interface prevailed in groundwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call