Abstract

The water-soluble, Lithol rubine B, dye was encapsulated into silica microspheres matrices. Encapsulation has been carried out by sol-gel process of W/O microemulsions formed from sodium silicate and dye aqueous solution in cyclohexane medium. The average particle size could be tailored from 1–10 μm, depending on the processing parameter such as homogenizing speed in the formation of W/O emulsion, the weight ratio of water to oil, and concentration of sodium silicate solution, etc. The pore size of dye-doped silica microspheres was measured by nitrogen adsorption-desorption isotherms. The leaching behavior of dye entrapped in silica matrices was investigated by UV/VIS and UV diffuse reflectance spectroscopy for the extract and solid powders after immersion for 24 h in water. The doping of GPTS (3-glycidoxypropyltrimethoxysilane) in sodium silicate and dye mixture solution greatly enhanced the stability against leaching of the dye. It was ascribed that GPTS serves simultaneously as an intermediate for the chemical bonding between the dye and silica, and as an agent for the formation of hybrid sol responsible for the shrinkage of pore size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call