Abstract

Vitamin B12 (VB12) is one of the essential vitamins for the body, which is sensitive to light, heat, oxidizing agents, and acidic and alkaline substances. Therefore, the encapsulation of VB12 can be one of the ways to protect it against processing and environmental conditions in food. In this work, the influence of pectin concentration (0.5–1% w/v), whey protein concentrate (WPC) level (4–8% w/v) and pH (3–9) on some properties of VB12-loaded pectin–WPC complex carriers was investigated by response surface methodology (RSM). The findings showed that under optimum conditions (1:6.47, pectin:WPC and pH = 6.6), the encapsulation efficiency (EE), stability, viscosity, particle size and solubility of complex carriers were 80.71%, 85.38%, 39.58 mPa·s, 7.07 µm and 65.86%, respectively. Additionally, the formation of complex coacervate was confirmed by Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). In addition, it was revealed that the most important factor in VB12 encapsulation was pH; at a pH < isoelectric point of WPC (pH = 3), in comparison with higher pH values (6 and 9), a stronger complex was formed between pectin and WPC, which led to an increase in EE, lightness parameter, particle size and water activity, as well as a decrease in the zeta-potential and porosity of complex carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call