Abstract

The structure and stability of endohedral TM@(AlN)12 (TM = Ti, Mn, Fe, Co, Ni) complexes are studied at the level of density functional theory. It is found that complexes with TM = Mn, Fe, and Ni are energy minimum structures with TM at the cage center in Th symmetry, while those with TM = Ti and Co have more negative inclusion energies and the off-centered structures with TM placed towards one hexagon face in C1 symmetry. The calculations predict that the HOMO and LUMO energy gap of TM@(AlN)12 differs from those of the (AlN)12 cage and a free TM atom. The amount of charge that is transferred from the encapsulated guests to the cage increases with the atomic radius. The electronic and magnetic properties of TM@(AlN)12 are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.