Abstract

TiO(2)(B)@SnO(2)/carbon hybrid nanowires have been synthesized by two simple hydrothermal processes and subsequent heat treatment in argon. The composite has a unique architecture, as its morphology consists of particles having a TiO(2)(B) nanowire core and a porous SnO(2)/carbon nanoparticle shell layer. The unique core/shell structure and chemical composition will be useful for many potential applications, including the lithium ion battery. The electrochemical results on the composite are presented to demonstrate the superior cycling performance and rate capability of the TiO(2)(B)@SnO(2)/carbon nanowires. This composite exhibits a high reversible capacity of ∼669mAhg(-1), and excellent cycling stability, indicating that the composite is a promising anode material for Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call