Abstract

Moderate osmotic shocks of human erythrocytes by hypotonic dialysis (0.06 mosmol/kg) induce cell swelling and formation of pores, without causing apparent lysis. Using 125I-labeled macromolecules of different molecular weight and net charge, we followed the kinetics and efficiency of their encapsulation into erythrocytes. After a 20–30 min period of cell dialysis, macromolecules of up to 50 kDa begin diffusing into the swollen cells by a process which can be described by a first-order two-compartment kinetics. Adsorption to the external cell surface was insignificant, while adsorption to the inner membrane surface was substantial (15–20%) only for positively charged proteins, at physiological pH. After resealing, pores of a 12–14 kDa cut-off might remain open allowing some release of entrapped material (20–30%), depending on the final cytocrit, while the remaining might be associated with inner membrane or cytosolic components. Although the method of hypotonic dialysis is known to affect minimally the biophysical and immunological properties of red blood cell membranes [1], the interaction of encapsulated material with cell constituents would need to be further assessed when considering red cells as macromolecular carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.