Abstract

Probiotics viability and stability is a core challenge for the food processing industry. To prolong the viability of probiotics (Lactobacillus acidophilus), gelatin (GE)-chitosan (CH) polyelectrolytes-coated nanoliposomes were developed and characterized. The average particle size of the nanoliposomes was in the range of 131.7-431.6nm. The mean zeta potential value of the nanoliposomes differed significantly from -42.2 to -9.1mV. Scanning electron micrographs indicated that the nanoliposomes were well distributed and had a spherical shape with a smooth surface. The Fourier transform infrared spectra revealed that the GE-CH polyelectrolyte coating has been effectively applied on the surface of nanoliposomes and L. acidophilus cells were successfully encapsulated in the lipid-based nanocarriers. X-ray diffraction results indicated that nanoliposomes are semicrystalline and GE-CH polyelectrolyte coating had an influence on the crystalline nature of nanoliposomes. Moreover, the coating of L. acidophilus-loaded nanoliposomes with GE-CH polyelectrolytes significantly improved its viability when exposed to simulated gastrointestinal environments. The findings of the current study indicated that polyelectrolyte-coated nanoliposomes could be used as an effective carrier for the delivery of probiotics and their application to food matrix for manufacturing functional foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.