Abstract

This study reports on the development of electrospun poly(2-hydroxyethyl methacrylate) (pHEMA) fibers loaded with synthetic and natural antioxidants in the form of selected types of polyphenols such as vanillic, gallic, syringic acids, catechin or natural spruce bark extract to investigate their release behavior in terms of antioxidant activities. Homogenous fiber morphologies were obtained at specified concentration ranges of pHEMA within the spinning solutions, exhibiting fiber diameters in the range from 0.5±0.1μm to 1.9±0.5μm. The addition of polyphenols resulted in an increase of fiber diameters with increasing concentration of additives. This is attributed to the effect of hydrogen bonding between the active ingredients and the polymeric matrix, increasing shear viscosities and thus hindering effective drawing processes during fiber formation. Polyphenol release measurement gave high release rates in a first phase followed by a smooth release at long term. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, used to monitor antioxidant activity, showed that polyphenols had retained their activity after incorporation into the pHEMA nanofibers. Furthermore, it was demonstrated that the encapsulation of polyphenols in pHEMA nanofibers can delay to a high extent their degradation induced by environmental factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call