Abstract

Phytoncides are volatile organic compounds released from trees and plants and are well known for their natural antibacterial activity. In this study, emulsion electrospinning was used to encapsulate phytoncide in the core of nanofibers, with the aim of developing environmentally friendly, functional nanofibers with a sustained release of the encapsulated component. Core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers were successfully prepared by emulsion electrospinning using an ordinary single-nozzle electrospinning setup. An oil-in-water emulsion of an aqueous solution of poly(vinyl alcohol) (as the aqueous phase) and phytoncide (as the oil phase) was used to prepare the core/sheath structured nanofibers. Nanocomposite fibers were electrospun under various spinning conditions and emulsion formulations to find the suitable processing conditions for fabricating nanofibers with core/sheath structures. The resulting nanofibers exhibited a well-aligned core/sheath structure with fiber diameters of 250-350 nm. The release profile of phytoncide from the core of nanofibers over a 21 day period showed that phytoncide was released in a sustained manner over 14 days. The core/sheath structured phytoncide/poly(vinyl alcohol) nanofibers exhibited 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, indicating that the encapsulated phytoncide in the fiber provided strong antimicrobial effects.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call