Abstract
In this study, we chemically modified a phytoglycogen structure to introduce negative surface charge via carboxymethylation (CMPG) and then prepared CMPG-based ternary nanocomplex particles through electrostatic interactions with sodium caseinate (core) and chemical cross-linking with pectin (shell). The chemical cross-linking process by glutaradehyde was systematically optimized under various temperatures and durations. The cross-linked ternary nanocomplex was comprehensively characterized, and our results showed that it had a size of 86 nm with a spherical shape, smooth surface, homogeneous distribution, and negative surface charge. The chemical cross-linking process significantly improved colloidal stability of the nanocomplex under simulated gastrointestinal fluids with digestive enzymes. The as-prepared nanocomplex exhibited exceptional capability to encapsulate phloretin, a natural dihydrochalcone, as a model lipophilic bioactive compound. The nanocomplex not only showed a slow and sustained kinetic release of phloretin under simulated gastrointestinal fluids but also dramatically enhanced its antioxidant activity under an aqueous environment compared to pure phloretin dissolved in ethanol. Findings from this work revealed the promising features of the as-prepared ternary nanocomplex as a potential oral delivery system for lipophilic bioactive compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.