Abstract

The recent discovery that mithramycin(MTR) in aqueous solution forms a high affinity[Ca(MTR)4]2- complex led us to the idea thatCa2+-loaded liposomes might be able to accumulateMTR in their aqueous internal compartment. Wetherefore investigated the uptake of MTR into largeunilamellar vesicles (LUV) containing NaCl orCaCl2. Our data show that MTR was efficientlyaccumulated within LUV made fromdipalmitoylphosphatidylcholine and cholesterol, onlywhen the liposomes contained Ca2+ and wereresuspended in a Ca2+-free medium. A drugencapsulation efficiency as high as 60% was achieved,at a drug to lipid molar ratio of 1/18. The circulardichroism and fluorescence excitation spectra ofliposome-encapsulated MTR (LMTR) displayed strongsimilarities with those of the [Ca(MTR)4]2-complex. LMTR was found to be stable, when submittedto conditions that destabilized the[Ca(MTR)4]2- complex. Upon dilution andincubation for 24 h at 37 °C, MTR-containingliposomes did not release a significant amount of MTR.These properties were attributed to the formation ofa high affinity complex between MTR and Ca2+inthe aqueous compartment of liposomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call