Abstract

Metal catalysts have been employed as cathodes for solid oxide fuel cells to facilitate the surface exchange rate in the intermediate temperature range (600–800 °C). However, incorporated metal catalysts easily agglomerate, resulting in the loss of the reaction sites; thus, the electrochemical performance rapidly deteriorates over time. To hinder the agglomeration of metal catalysts while maintaining the catalytic activity, we encapsulated metal catalysts with nano-particulated perovskite materials using an infiltration technique. The encapsulation of Ag nanoparticles with nano-particulated Sm0.5Sr0.5CoO3-δ (SSC) successfully prevented the agglomeration of Ag nanoparticles, maintaining the initial polarization resistance for 200 h at 650 °C, while the polarization resistance of the SSC electrodes with the Ag nanoparticles increased by ~ 190% after 200 h at 650 °C because of the thermal agglomeration of Ag nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.