Abstract

A nanocomposite cathode based on LiFePO4 (LF) nanoparticles embedded 3D cubic ordered mesoporous carbon CMK-8 for lithium-ion batteries is synthesized by a facile impregnation method followed by further modification with carbon coating. The effects of variation of carbon contents on electrochemical performances of cathodes are investigated. The highly crystalline nanophase of LiFePO4 particles is confirmed by X-ray diffraction and TEM analysis. Nitrogen adsorption–desorption isotherms reveal persistence mesoporosity after encapsulation of LiFePO4 nanoparticles. The graphitic phase in LF/C@CMK-8-X (X = amount of CMK-8) nanocomposites is detected by analyzing the Raman spectra of the matrix carbon due to CMK-8 and the coated carbon (C). The electrochemical properties of the LF/C@CMK-8-X nanocomposites are evaluated with cyclic voltammetry, impedance spectroscopy, and charge–discharge cycling. The excellent rate capability with a discharge capacity value of 184.8 mA h g–1 is obtained for LF/C@CMK-8-0.5 nanoc...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call