Abstract

Various DFT functionals, including those containing long-range interactions and dispersion, together with HF and MP2 theoretical methods, were used to identify the number of H2 molecules that can be encapsulated inside a C50 cage. It is demonstrated that the 2H2@C50 complex is thermodynamically unstable based on its positive complexation energy. Some discrepancies, however, were found with respect to the stability of the H2@C50 complex. Indeed, SVWN5, PBEPBE, MP2, B2PLYP, and B2PLYPD calculations confirmed that the H2@C50 complex is thermodynamically stable, while HF, BP86, B3LYP, BHandHLYP, LC–wPBE, CAM–B3LYP, and wB97XD showed that this complex is thermodynamically unstable. Nevertheless, examination of strain and dispersion energies further supported the fact that one H2 molecule can indeed be encapsulated inside the C50 cage. Other factors, such as the host–guest interactions and bond dissociation energy, were analyzed and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.