Abstract

The present PhD thesis, entitled Encapsulation of folic acid in mesoporous silica supports: a nutritional and technological approach, focuses on the development of new smart systems for the controlled delivery of folic acid for nutritional applications. The first part of the thesis shows folic acid encapsulation in polyamine-functionalized silica porous matrices from a nutritional approach. The first part evaluates not only the influence of the loading method and the type of silica support employed (MCM-41, SBA-15, UVM-7 and Hollow Silica) on the efficiency of folic acid encapsulation, but also the influence of the morphology and porous system on the folic acid delivery profile from different supports. Folic acid release studies from different supports with various pH values have demonstrated that the designed systems are capable of smartly modulating the delivery of the folic acid dependent on the pH of the medium (inhibition of the release at an acidic pH -stomach-, controlled release at a neutral pH -intestine-). This capacity makes these developed delivery systems an excellent alternative to direct fortification to successfully modulate the bioaccessibility of folic acid along the gastrointestinal tract. The stability of the supports during an in vitro digestive process was evaluated, and demonstrated that not only small particles can be attacked during the digestion process, but also the functionalization with organic molecules, which act as molecular gates, prevents this attack. Finally, the cell viability studies carried out with four different cell lines revealed that neither the supports nor their degradation products caused any specific toxicity during the in vitro digestive process. The second part evaluates the influence of adding different silica supports to two food matrices: gelatin gels and yoghurts. This technological approach enabled us to know that the capacity of these smart systems to deliver folic acid in a controlled manner during an in vitro digestive process is mantained even after their incorporation in stirred yoghurt. The effect of the matrices on the gel's physical properties depends on the particle size, functionalization and concentration. Finally, this thesis tested that the optimization of folic acid loading, achieved in the first part of the thesis, allowed the fortification of yoghurt with 100% of the dietary reference intake of folic acid with a very low amount of the system. This fortification affected neither the physico-chemical properties of the yoghurt, nor bacterial viability. In summary, it was concluded that the present thesis globally deals with folic acid encapsulation in silica porous matrices to be used in nutritional and food applications, which include the optimization of loading, release studies at diferent pH, in vitro digestions, stability studies of the employed matrixes, biocompatibility studies, and studies into the influence of their addition to food matrixes. The obtained results positively demonstrate that the developed smart folic acid delivery systems open up a new way of fortifying food without endangering the physico-chemical properties of the food to which they are added.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call