Abstract

Microcapsules composed of ethanol, water and dextrin as a water-soluble polymer can be used to encapsulate poorly water-soluble drugs by spray drying technique. For the encapsulation of a high dose of poorly water-soluble drugs, large amounts of ethanol and consequently large quantities of dextrin are needed for the dissolution of drug and the encapsulation of ethanol, respectively. In order to increase the ethanol content with the decreased amount of dextrin, sodium lauryl sulfate (SLS) was employed in the preparation of microcapsules without drug by a spray drying method. Phase diagrams were prepared to determine the region of microcapsule formation with a three-component system of ethanol, dextrin and water. The homogeneous phase indicated in the phase diagram was used to prepare the alcoholic microcapsules since this phase was not separated rapidly and not too viscous to be spray-dried. Interestingly, SLS at concentrations below 2% remarkably increased both the ethanol content and the encapsulation efficiency of ethanol. The maximum ethanol content and encapsulation efficiency were observed with 0.5–1% of SLS (35.4 and 67.6%, respectively). Furthermore, the increase by SLS was more pronounced at the low dextrin/water ratios than at the high dextrin/water ratios. In particular, the ethanol content and the encapsulation efficiency with the dextrin/ethanol/water ratio of 0.4/1/1, which had relatively small amounts of dextrin, were about ten times higher in the presence of SLS than those without SLS. In conclusion, this study shows that small amounts of SLS can increase the ethanol content and the encapsulation efficiency of ethanol, and allow the reduction in the amount of dextrin required to encapsulate ethanol in the preparation of microcapsules. These findings suggest that the use of SLS may permit the effective encapsulation of high dose of water-insoluble drug into microcapsules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.