Abstract

This study is designed to test the hypothesis that docetaxel [Doc] containing oily core nanocapsules [NCs] could be successfully prepared with a high percentage encapsulation efficiency [EE%] and high drug loading. The oily core NCs were generated according to the emulsion solvent diffusion method using neutral Labrafac CC and poly(d, l-lactide) [PLA] as oily core and shell, respectively. The engineered NCs were characterized for particle mean diameter, zeta potential, EE%, drug release kinetics, morphology, crystallinity, and cytotoxicity on the SUM 225 breast cancer cell line by dynamic light scattering, high performance liquid chromatography, electron microscopies, powder X-ray diffraction, and lactate dehydrogenase bioassay. Typically, the formation of Doc-loaded, oily core, polyester-based NCs was evidenced by spherical nanometric particles (115 to 582 nm) with a low polydispersity index (< 0.05), high EE% (65% to 93%), high drug loading (up to 68.3%), and a smooth surface. Powder X-ray diffraction analysis revealed that Doc was not present in a crystalline state because it was dissolved within the NCs' oily core and the PLA shell. The drug/polymer interaction has been indeed thermodynamically explained using the Flory-Huggins interaction parameters. Doc release kinetic data over 144 h fitted very well with the Higuchi model (R2 > 0.93), indicating that drug release occurred mainly by controlled diffusion. At the highest drug concentration (5 μM), the Doc-loaded oily core NCs (as a reservoir nanosystem) enhanced the native drug cytotoxicity. These data suggest that the oily core NCs are promising templates for controlled delivery of poorly water soluble chemotherapeutic agents, such as Doc.

Highlights

  • In cancer therapy, most of the proposed formulations present certain drawbacks related to the formulation properties including low drug loading, toxicity, and unsuitable release pattern

  • Docetaxel or Doc was purchased from LC Laboratories (Woburn, MA, USA)

  • Polymer selection based on the mean diameter of blank nanocapsules This experiment was performed to find out the suitable polymer using small-sized NCs

Read more

Summary

Introduction

Most of the proposed formulations present certain drawbacks related to the formulation properties including low drug loading, toxicity, and unsuitable release pattern. An ideal formulation should provide biocompatible nanosized particles and high drug loading with sustained-release characteristics. This allows releasing the drug in the target site in its therapeutic concentration and preventing drug inefficiency and side effects. A semisynthetic analog of paclitaxel, is an extract from the needles of the European yew tree Taxus baccata [1]. It is prepared by chemical modification of 10-

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.