Abstract

The electrosynthesis of hydrogen peroxide (H2O2) offers a sustainable and viable option for generating H2O2 directly, as an alternative to the anthraquinone oxidation method. This study focuses on the comparative study of Co nanoparticles and single-atomic Co sites (Co SACs) that were encapsulated into nitrogen-doped carbon for the electrosynthesis of H2O2, which has been synthesized by direct pyrolysis of Zn/Co-ZIF or Co-based zeolitic imidazolate frameworks (ZIF-67). The electrochemical measurement results demonstrate that the coexistence of Co nanoparticles and single-atomic Co sites in the CoNC catalyst is more conducive for H2O2 production compared to Co SACs only, possessing better H2O2 selectivity of 73.3% and higher faradaic efficiency of 87%. The improved performance of CoNC with SACs can be attributed to the presence of additional Co nanoparticles in the nitrogen-doped carbon layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.