Abstract
ABSTRACTEncapsulation of cellulose chain into carbon nanotubes and boron nitride nanotubes was investigated to find out the possibility of band gap engineering in these nanotubes. The structural stability and the electronic properties of the zigzag carbon nanotubes and boron nitride nanotubes filled with cellulose chain were studied using density functional theory. It was found that encapsulation of cellulose chain into nanotubes was an exothermic process. The metallic properties of the carbon nanotubes did not change by cellulose encapsulation. The semiconductor and insulator nanotubes filled with cellulose were shown semiconducting properties. The energy band gap of these tubes was decreased by cellulose encapsulation. The results demonstrated the ability of band gap engineering through the encapsulation of cellulose chain into carbon nanotubes and boron nitride nanotubes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.