Abstract

Enzymatic esterification is attracting for particular high-acid oil deacidification. In this study, Candida antarctica lipase B (CALB) was encapsulated into a series of nucleotide-hybrid metal coordination polymers (CPs), which were constructed by guanosine 5'-monophosphate (GMP) and various metals. We here found that, most of the present CPs encapsulated CALB (CALB@CPs) samples were highly selective for esterification while poor in glycerolysis reaction. They exhibited quite poor performance in glycerolysis, with triacylglycerols (TAGs) conversion lower than 5%, despite this considerable enzymatic hydrolysis activities were observed. However, they (most of them) showed good performance in esterification of fatty acids and glycerol for TAG synthesis. In addition, the GMP/Tb (CPs constructed by GMP and Tb3+ ) encapsulated CALB (CALB@GMP/Tb) transformed over 98% of oleic acid into glycerides in the high-acid oil deacidification process, and TAG content from 87 to 89% was obtained. Moreover, the CALB@GMP/Tb showed good reusability in the esterification system. The present CALB@CPs samples are selective for esterification and suitable for high-acid oils deacidification. This work provides a new system for enzymatic selectivity improvement study. © 2021 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call