Abstract

Soy phosphatidylcholine liposomes encapsulating increasing concentrations of two sea fennel extracts (aqueous and ethanolic) prepared by ultrasonication were freeze-dried, using glycerol as lyoprotectant. Particle properties, water dispersibility, colour, thermal properties and antioxidant capacity (radical scavenging capacity, ferric ion reducing power, Folin-reactive substances) of the liposomal preparations were determined. The freeze-drying process caused an overall increase in particle size and polydispersity index, while the zeta-potential became more electronegative. Both sea fennel extracts were rich in chlorogenic acid (42.61 and 58.48 mg/g for the aqueous and ethanolic extracts, respectively) and showed great antioxidant activity. Vitamin C was identified in the aqueous extract, whereas rutin and rosmarinic acid in the ethanolic one. The entrapment efficiency, determined in the liposomes prepared at the highest extract concentration, was 65.6% and 49.1% for the aqueous extract and the ethanolic extract, respectively. The liposomal antioxidant activity and total phenolic content followed a linear increasing tendency as a result of increasing the extract concentration, irrespective of the type of extract. Higher antioxidant activity was found in the liposomes loaded with the ethanolic extract, in a clear relationship to the greater amount of highly antioxidant phenolic compounds extracted, and also to their lower entrapment efficiency, which caused a greater amount of extract to remain outside the liposome. Both extracts were suitable for producing liposomes with antioxidant properties which could be dried and used to design functional foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.