Abstract

Activated carbon (AC) is an effective adsorbent for removing environmental pollutants. However, the traditional powder form of AC shows difficulty in handling during application which widely limits its utilization on the industrial scale. Herein, to avoid such limitation, traditional AC powder was encapsulated into calcium alginate (CA) microspheres. Calcium alginate/activated carbon (CAA) composite microspheres were prepared via cross-linking of sodium alginate/activated carbon composite solutions in a calcium chloride solution. Furthermore, in order to boost adsorption affinity of CAA composite microspheres toward elemental mercury (Hg°), ammonium iodide (NH4I)-treated calcium alginate/activated carbon (NCA) composite microspheres were obtained by a simple impregnation method using NH4I treatment. The morphological, structural, and textural properties of the microspheres were characterized and their Hg° adsorptive capacity was tested at different temperatures. Interestingly, the maximum adsorption capacity of NCA adsorbent composite microspheres was determined as 36,056.5μg/g at a flow rate of 250mL/min, temperature of 25°C, and 500μg/Nm3 of Hg° initial concentration. The Gibbs free energy (ΔG°) for NCA adsorbent composite microspheres varied from - 8.59 to - 10.54kJ/mol indicating a spontaneous adsorption process with an exothermic nature. The experimental Hg° breakthrough curve correlated well with Yoon‒Nelson and Thomas models. The breakthrough time (tb) and equilibrium time (te) were found to be 7.5days and 23days, respectively. Collectively, the findings of this work indicate a good feasibility of using NCA composite microspheres as potential adsorbents for removing Hg° from natural gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.