Abstract

A ‘box-shaped’ three-dimensional (3D) DNA origami of ~40-nm dimensions was selectively formed by closing a symmetric open motif with three orthogonal faces. This 3D DNA origami was used as an intelligent nano-container to encapsulate exactly one 10-nm gold nanoparticle (AuNP). AuNPs were functionalized with thiol-modified DNA strands and attached to one of the faces of the open motif, which was designed to be an interior surface of the box and decorated with three complementary strands. The open motif was then closed into the box shape as triggered by the addition of DNA strands joining the remaining edges. An examination of the suitable folding path of an M13 scaffold using fluorescently labeled staple strands revealed that the flexibility at the hinge was essential for the efficient closing of the DNA origami container. Atomic force microscope and transmission electron microscope imaging of agarose-gel-purified complexes clearly showed the successful encapsulation of one AuNP inside the shell. A ‘box-shaped’ three-dimensional (3D) DNA origami of ~40-nm dimensions was selectively formed by closing a symmetric open motif with three orthogonal faces. This 3D DNA origami was used as an intelligent nano-container to encapsulate exactly one 10-nm gold nanoparticle (AuNP). AuNPs were functionalized with thiol-modified DNA strands and attached to one of the faces of the open motif, which was designed to be an interior surface of the box and decorated with three complementary strands. The open motif was then closed into the box shape as triggered by the addition of DNA strands joining the remaining edges. An examination of the suitable folding path of an M13 scaffold using fluorescently labeled staple strands revealed that the flexibility at the hinge was essential for the efficient closing of the DNA origami container. Atomic force microscope and transmission electron microscope imaging of agarose-gel-purified complexes clearly showed the successful encapsulation of one AuNP inside the shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call