Abstract

Immunotherapy brings new hope to the fight against lung cancer. General immunostimulatory agents represent an immunotherapy strategy that has demonstrated efficacy with limited toxicity when delivered intratumorally. The goal of this study was to enhance the antitumor efficacy of unmethylated oligodeoxynucleotides containing CpG motifs (CpG) and polyinosinic-polycytidylic acid (poly I:C) double-stranded RNA following their local delivery in lung cancer by encapsulating them in liposomes. Liposomes encapsulation of nucleic acids could increase their uptake by lung phagocytes and thereby the activation of toll-like receptors within endosomes. Liposomes were prepared using a cationic lipid, dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the main phospholipid in lung surfactant. The liposomes permanently entrapped CpG but could not efficiently withhold poly I:C. Both poly I:C and CpG delayed tumor growth in the murine B16F10 model of metastatic lung cancer. However, only CpG increased IFN-γ levels in the lungs. Pulmonary administration of CpG was superior to its intraperitoneal injection to slow the growth of lung metastases and to induce the production of granzyme B, a pro-apoptotic protein, and IFNγ, MIG and RANTES, T helper type 1 cytokines and chemokines, in the lungs. These antitumor activities of CpG were strongly enhanced by CpG encapsulation in DOTAP/DPPC liposomes. Delivery of low CpG doses to the lungs induced increased inflammation markers in the airspaces but the inflammation did not reach the systemic compartment in a significant manner. These data support the use of a delivery carrier to strengthen CpG antitumor activity following its pulmonary delivery in lung cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call