Abstract
This study was aimed at developing a polymeric drug delivery system for a new and potent antitumor drug, 9-nitrocamptothecin (9-NC), intended for both intravenous administration and improving the therapeutic index of the drug. To achieve these goals, 9-NC loaded poly( dl-lactide-co-glycolide) (PLGA) nanoparticles were prepared by nanoprecipitation method and characterized. The full factorial experimental design was used to study the influence of four different independent variables on response of nanoparticle drug loading. Analysis of variance (ANOVA) was used to evaluate optimized conditions for the preparation of nanoparticles. The physical characteristics of PLGA nanospheres were evaluated using particle size analyzer, scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. The results of optimized formulations showed a narrow size distribution with a polydispersity index of 0.01%, an average diameter of 207 ± 26 nm, and a drug loading of more than 30%. The in vitro drug release profile showed a sustained 9-NC release up to 160 h indicating the suitability of PLGA nanoparticles in controlled 9-NC release. Thus prepared nanoparticles described here may be of clinical importance in both stabilizing and delivering camptothecins for cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.