Biomaterials | VOL. 32

Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy

Publication Date Apr 1, 2011


We report here a general approach to using multifunctional poly(amidoamine) (PAMAM) dendrimer-based platform to encapsulate a potential anticancer drug for targeted cancer therapy. In this approach, amine-terminated generation 5 (G5) PAMAM dendrimers were sequentially modified with fluorescein isothiocyanate (FI) and folic acid (FA) via covalent conjugation, followed by an acetylation reaction to neutralize the remaining amines of the dendrimer surfaces. The synthesized multifunctional dendrimers (G5.NHAc-FI-FA) were then used to complex a potential anticancer drug, 2-methoxyestradiol (2-ME) for targeted delivery of the drugs to cancer cells overexpressing high-affinity folic acid receptors (FAR). We show that the formed G5.NHAc-FI-FA/2-ME complexes with each dendrimer encapsulating approximately 3.7 2-ME molecules are water soluble and stable. In vitro release studies show that 2-ME complexed with the multifunctional dendrimers can be released in a sustained manner. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in conjunction with cell morphology observation demonstrates that the G5.NHAc-FI-FA/2-ME complexes can specifically target and display specific therapeutic efficacy to cancer cells overexpressing high-affinity FAR. Findings from this study suggest that multifunctional dendrimers may be used as a general drug carrier to encapsulate various cancer drugs for targeted therapy of different types of cancer.


Multifunctional Dendrimers Folic Acid Receptors High-affinity Folic Acid Receptors Multifunctional Poly Generation 5 Different Types Of Cancer PAMAM Dendrimers Covalent Conjugation Potential Anticancer Drug Folic Acid

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Nov 21, 2022 to Nov 27, 2022

R DiscoveryNov 28, 2022
R DiscoveryArticles Included:  2

No potential conflict of interest was reported by the authors. The conception and design of the study, acquisition of data, analysis and interpretatio...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.