Abstract

Under ambient conditions and in H2O and O2 environments, reactive oxygen species (ROS) cause immediate degradation of the mobility of few-layer black phosphorus (FLBP). Here, we show that FLBP degradation can be prevented by maintaining the temperature in the range ∼125-300 °C during ROS exposure. FLBP devices maintained at elevated temperature show no deterioration of electrical conductance, in contrast to the immediate degradation of pristine FLBP held at room temperature. Our results constitute the first demonstration of stable FLBP in the presence of ROS without requiring encapsulation or a protective coating. The stabilization method will enable applications based on the surface properties of intrinsic FLBP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.