Abstract

We investigated the co-assembly of amphiphilic diblock copolymers in solutions containing drugs and functional nanoparticles using the dissipative particle dynamics (DPD) method. By controlling the size and the concentration of the functional nanoparticles, the length of the hydrophobic blocks, and the interaction parameters between the hydrophobic block/solvent and the functional nanoparticles, we obtained the desired aggregates to load drugs. The aggregates loaded with drugs can be disk-like micelles, sphere-like micelles and vesicles with functional nanoparticles on the surface. When the solvent environment changes, the drugs loaded in the functional vesicles can release into the solvent. The release content is critically dependent on the repulsive interaction between the drugs and the solvent. The dynamic curve of drug release is obtained. The result is in agreement with the experiments about drug release. Our studies showed that we can precisely control the formation of functional vesicles to load and release drugs. Loading drugs in the process of self-assembly and controlling the release have broad potential in the field of clinical medicine and adding functional nanoparticles can be of great help in drug delivery and medical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call